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Project Summary for Coarse Grain Reconfigurable
Array Technology

Jan Frigo, Paul Graham
Los Alamos National Laboratory

Abstract— This project involves running some benchmark
code on specialized hardware processors to determine the
power/operations efficiency of the hardware. Two types of Coarse
Grain Reconfigurable Array (CGRA) technology will be covered;
a processor-oriented, specialized RISC processor, the Stretch
S5000; and a medium-grain specialized hardware-oriented tech-
nology designed for the embedded, DSP markets, the MathStar
FPOA chip. These technologies use a C-based language. We
would select one of these technologies based on the student’s
interests and background. The benchmark algorithms we have
collected from the signal and image processing domain include:
an FIR filter, ffts, a matched filter, digital down converter, an
adaptive beam former and some image processing algorithms.
The project would involve profiling one or more of these codes to
determine the power/ops for the application. Also, if time allows
algorithm optimizations may be implemented to improve run-
time performance. The time and effort to develop the application
and the experiences using the development environment would
also be reported.

Keywords:reconfigurable computing, FPGA, Coarse-grain reconfig-
urable array, CGRA, SIMD, MIMD, SoC

I. PROJECTOUTLINE

The goal of the coarse-grained reconfigurable array effort is
to evaluate new medium-grained processing technologies and
recommend them for use in the proliferation detection domain.
CGRA technology has a basic computational unit or arithmetic
logic unit (ALU) that is a higher level of abstraction than an
Field Programable Gate Array (FPGA). CGRA technology is
optimized for a particular application domain to maximize the
advantages of their specialized processing units. Through the
use of massively parallel and specialized processing units, the
CGRA technologies hope to gain high performance and an im-
proved power per operation metric compared to conventional
programmable logic. Currently, embedded systems, conven-
tional reconfigurable computing (RCC) systems, and sensor-
oriented systems utilize processor-based or hybrid processor-
FPGA hardware systems to address a variety of data analysis,
data mining, and real-time processing applications. These
systems introduce a set of known limitations such as: the
communication between the processor and the configurable
hardware results in programming difficulties and communi-
cation overhead that can greatly reduce overall performance;
placement and routing to hardware of a very large, complex al-
gorithm may introduce considerable latency; the development
environment tool chain is expensive, time consuming, and
not user-friendly. CGRAs aim to combine computation units
(processor(s), hardware ALUs or combinations of both) in one

architecture so as to provide a simplified programming model,
improve the processor-to-hardware communication bottleneck,
shorten the overall application development time, and lower
the power budget for high performance computations.

FPGA’s are considered fine-grain reconfigurable devices
because they are programmed (and reprogrammed) at the gate
level with arbitrary bit precision and functions. Besides FPGAs
as the fine-grain reconfigurable platform, the general reconfig-
urable computing platforms takes two forms: processor-centric
cluster, or medium-grain hardware processing element array.

Processor-oriented clusters such as MIT’s RAW, or Am-
bric’s AM2000 family of reconfigurable processing arrays
(RPAs), use some kind of RISC core and may or may not
have application-specific, reconfigurable logic blocks. As the
number of processors increase, the programmer-friendliness
decreases as it approaches a highly parallel processor system.
In addition, because of the potential irregular size and inter-
connection complexity, customizing a device or building ad-
ditional devices may be considered to be a complete redesign.
Ultimately large scale processor-oriented cluster systems could
be time consuming to program, test and design, thus, devel-
opment cost may be expensive.

Most medium-grain reconfigurable platforms (e.g., Math-
Star’s FPOA, Velogix’s VX200 chip) approach implementation
with an ASIC design flow. For these systems, the customiza-
tion process may be just as cumbersome as their processor-
oriented equivalent, due to place and routing issues when
mapping to hardware and the complexities of scaling to a
new device. As a result, their operating frequency is generally
less than 200 MHz which may be adequate, depending on the
application domain.

This project covers processor-oriented technology and a
medium-grain specialized hardware-oriented technology de-
signed for the embedded, DSP markets. These technologies are
C-based as are the benchmark algorithms we have collected.
The project would involve profiling these codes to determine
power/ops andhot spotsor what functions or loops cause the
algorithms to run slowly. If possible, optimizations to the code
could be implemented to improve the run-time performance.
The time and effort to develop an application would also be
reported.

II. B ENCHMARK KERNELS

The benchmark algorithms selected for evaluation of the
CGRA technologies are based on programmatic proliferation
detection efforts, i.e., algorithms that are in use or have been



used on recent projects in Los Alamos National Laboratory’s
(LANL) International Space and Response (ISR) Division. The
signal processing kernels include: a poly-phase filter (ppf),
a 4k FFT (16-bit), and an adaptive beamformer algorithm.
The FIR filters and FFTs are commonly used DSP operations
that have optimized FPGA implementations for comparison.
The adaptive beamformer algorithm has components such
as a covariance matrix inversion (LU decomposition) which
are difficult to implement on FPGAs since the computation
has division operations and must be converted to fixed point
arithmetic from a floating point model - computing in floating
point is very costly on an FPGA.

The image processing kernels selected include: kmeans
clustering, pixel purity index (PPI), and a matched filter
algorithm. These were chosen because they contain operations
such as the dot product and convolution that need a large
amount of local memory accesses and parallel computations.
We wanted to choose a mix of algorithms - those that are
typically optimized for FPGAs and DSP processors and some
that are challenging to compute on conventional programming
logic devices.

The source code for these benchmark algorithms is written
in C/C++, RTL VHDL and/or Matlab/Simulink.

A. Poly-phase Filter Bank

In the field of signal detection, multi-rate filter banks have
been employed to help detect RF signals in noisy envi-
ronments. By decomposing a signal into various frequency
subbands, filter banks enhance many algorithms because they
make it easier to identify pertinent material on a band by
band basis. The polyphase implementation1 is a multi-rate
filter structure combined with a Fast Fourier Transform (FFT)
designed to extract subbands from an input signal[1]. The
polyphase filter portion of the structure is based on a prototype
baseband low-pass Finite Impulse Response (FIR) filter with
symmetric coefficients, i.e., the firstn/2 and the lastn/2
coefficients are the same, albeit in reverse order. The remaining
filters of the filter bank are frequency shifted versions of the
prototype. The symmetry of this prototype filter combined
with the structured frequency shifts allows for an optimal
implementation of the filter bank. First, a prototype low-pass
FIR filter, h0[n], with the desired filter parameters is designed.
The polyphase filters,pk[n], are expressed in terms of the
prototype filter,

pk[n] = h0[k + lM] k = 0..M-1, l = 0..L− 1
n is the length of the FIR prototype,M is the number of

polyphase filters, L is the length of the individual polyphase
filters, (L = n/M = 4). The FFT is used following the polyphase
filtering structure to provide the frequency shifts for the
various channels.

B. 4k FFT

A fast Fourier transform (FFT) is an efficient algorithm to
compute the discrete Fourier transform (DFT) and its inverse.

1The filter structure was developed in collaboration with Prof. John Ville-
senor’s team at UCLA.

FFTs are of great importance to a wide variety of applications
such as:

• 64 pt FFT, radix = 2 or 4 - match band for ionosphere
• 512 pt FFT, radix = 2 or 4 - typical satellite time link
• 1K or 4K FFT, radix = 2 or 4 - commonly used bench-

marks in the literature

C. Adaptive Beamformer

Adaptive beamforming has important applications to dis-
tributed sensor networks, in particular to energy constrained
ad hoc networks. Beamforming can be applied to the sensor
networks, for example, to estimate the direction of arrival
of a low power signal in a noisy environment; also it can
be applied to network communications for data exfiltration
using collaborative coherent transmissions as a phased array
thus saving power. These well-known techniques are compu-
tationally intensive and real-time. There is a multiplicity of
algorithms for beamforming generally using matrix inversions,
FFTs or other weighted sum type operations. In general these
algorithms lend themselves to fixed precision highly parallel
computations ideally performed by FPGAs but one common
operation, inversion of a covariance matrix, generally works
best if implemented in floating point. Prior work by [3] spon-
sored by NA-22 has explored the feasibility of an all-FPGA
implementation of an adaptive beamformer using a Bayesian
method. In this application domain, CGRA technology with
floating point capability may have an advantage compared to
FPGAs.

We investigate an inverse covariance matrix computation, a
floating point LU decomposition shown below in Equations 1
and 2, that is difficult to implement on an FPGA since it
requires floating point arithmetic for best results.

βij = aij − Σi−1
k=1αikβkj (1)

αij = 1/βjj(aij − Σj−1
k=1αikβkj) (2)

D. K-means Clustering Algorithm

K-means clustering is an unsupervised clustering algorithm
that is a popular data mining technique. The basic principle of
the image clustering process is to take an original image and to
represent the same image using only a small number of pixel
values[6]. The K-means clustering algorithm performs this
task by attempting to minimize a cost function (the absolute
value of a difference) over a set of cluster centers. First, the
algorithm assigns pixels randomly to the classes, computes
the centers of the classes. There is a outer loop for a number
of iterations, N, which can be either fixed in advance or
undetermined, and an inner loop that scans all the pixels. For
each pixel we check if it still belongs to its assigned class. If
not, the pixel is moved to another class and the two centers,
corresponding to both the new and the old classes, are updated.
The number of pixels in a class is stored as well as the sum
accumulation necessary for recomputing the class centers. The
class centers are periodically updated every block of B pixels.



The computation can roughly be split into three parts: the
distance calculation between a pixel and a class center, the
accumulator update and the center update. The most time
consuming part of the algorithm is the distance computation
between the pixels and the class centers, even if the class
center is frequently updated. The accumulator and the class
center updates represent only a small percentage of the total
computation time, especially for a partition into a large number
of classes. For example, for a class partition of 32, the distance
computation represents more than 99.6 % of the computation
time.

This iterative algorithm has the following steps:

1) Randomly assigns each data element A[i] to one of k
classes

2) Compute the centers of the classes
3) Loop over the data set A

a) Let C = class of A[i]
b) Determine the class number K which has the

minimum distance to pixel i
c) Store class number K to NewClassIndex[i]

4) Loop over the data set A

a) if (C = class of A[i]) is not equal to class (K =
NewClassIndex[i]) then move pixel i from class C
to class K and re-compute the centers of classes K
and C

FPGA implementations [4] focus only on parallelizing the
most time consuming part, that is the distance computation
between the pixels and the class centers. A pixel stream flows
through a linear array of processors. The number of processors
is equal to the number of classes. A processork computes a
distance between the classk and the current flowing pixel.
The result is taken at the rightmost end of the array by the
filter process and corresponds to the index class for which a
minimum distance has been found.

E. Pixel Purity Index

The Pixel Purity Index (PPI) is an algorithm employed in
remote sensing for analyzing hyperspectral images. Particu-
larly for low-resolution imagery, a single pixel usually covers
several different materials, and its observed spectrum is (to
a good approximation) a linear combination of a fewpure
spectral shapes. The PPI algorithm tries to identify these pure
spectra by assigning a pixel purity index to each pixel in the
image; the spectra for those pixels with a high index value are
candidates for basis elements in the image decomposition.

The algorithm proceeds by generating a large number of
randomD-dimensional vectors, called skewers, through the
hyperspectral image. For each skewer, every data point is
projected onto the skewer, and the position along the skewer
is noted. The data points that correspond to extrema in the
direction of a skewer are identified and placed on a list. As
more skewers are generated, this list grows. The number of
times a given pixel is placed on this list is also tallied. The
pixels with the highest tallies are considered the most pure,
and the pixel’s count provides its pixel purity index.

Most of the execution time of the PPI algorithm is spent
in computing dot-products between the pixels and the skew-
ers. These dot-product are highly independent and could be
done simultaneously. There are many ways to parallelize the
algorithm, one such approach [5] targets the limited resources
available on FPGA boards. A sequential version of the Pixel
Purity Index algorithm follows:

PIXELS[N][D]; // an image of N hyperpixels
SKEWER[K][D]; // a set of K random skewers
PPI[N]; // the PPI result

// reset pixel purity index
for (n=0; n < N; n++) PPI[n]=0;
for (k=0; k < K; k++) // K skewers

{
dpmax=MIN_INT; dpmin=MAX_INT;
for (n=0; n < N; n++) // N pixels

{
// compute a Dot-Product
dp = 0;
for (d=0; d < D; d++)

dp = dp + SKEWERS[k][d]*PIXELS[n][d];
// detect extrema
if (dp > dpmax) { imax=n; dpmax=dp; }
if (dp < dpmin) { imin=n; dpmin=dp; }

}

// update PPI
PPI[imax]++;
PPI[imin]++;

}

For each skewer,N dot-products are computed to determine
the two pixels which produce the largest and the smallest dot-
product. The pixel index (PPI vector) is modified accordingly.
A pixel n is a candidate to be a pure pixel ifPPI[n] has a
high value.

From the above description it can easily be seen that all the
dot-products can be computed independently: there are no de-
pendencies between them. The parallelization takes advantage
of this by computingKS ×NS dot-products simultaneously,
whereKS andNS represent the number of skewers and pixels
that can be processed in parallel.

F. Matched Filter

The matched filter is a well-known technique for detecting a
signal in the presence of known forms of “clutter.” By filtering
with respect to pre-determined background signatures, weak
signals may be recovered that might otherwise have been lost
in the background. Matched filters are used in many appli-
cation domains, of particular interest to us are multi-spectral
image processing, RF signal detection and pulse compression.
In the case of multi- or hyper-spectral image processing,
the matched filter is well-suited to automatic detection of
signals within image cubes containing tens to hundreds of
spectral channels. The purpose of a matched filter is to match
an image pixel’s spectral signature against a pre-determined
"background" signature. When analyzing multi- or hyper-
spectral imagery with complex background clutter for small or
weak targets, filtering a target image through a matched filter



suppresses background spectra and thus increases response to
non-background features. A bank of matched filters may be
created to filter out a variety of “clutter” effects [2].

The matched filter is implemented by a convolution func-
tion. A convolution is an integral that expresses the amount of
overlap of one function as it is shifted over another function. It
therefore "blends" one function with another. For example, in
synthesis imaging, the measured dirty map is a convolution of
the "true" clean map with the dirty beam (the Fourier transform
of the sampling distribution).

III. STRETCH S5

Stretch Inc. was founded in March 2002. Stretch pro-
vides software-configurable processors for compute-intensive
applications and standard C/C++ programming tools. The
systems can address applications in the telecom, networking,
video, medical markets and support evolving standards such
as H.264 video encoding and 802.16-2004 wireless standards.
Stretch offers development boards for the video, wireless, and
biometric application domains.

A. Architecture

Stretch uses a single specialized, high performance RISC
processor core, the 300-MHz Xtensa core with 16- and 24-
bit instructions as shown in Figure 1. The core supports a
memory managed unit (MMU) with a translation look-aside
buffer(TLB) which translates virtual pages to physical pages.
The external and embedded memory specifications are:

• 64-bit DDR400 SDRAM
• 256-KB SRAM
• 32-KB Data RAM
• 32-KB Data Cache
• 32-KB Instruction Cache

The I/O support on the Stretch S5 chip is as follows:

• 1 32-bit, 66MHz PCI port
• 4 programmable parallel ports
• 2 Time Division Multiplexed (TDM) ports
• 1 Generic Interface Bus (GIB)
• 2 programmable serial ports
• 2 UART ports with IrDA
• 1 General Purpose I/O (GPIO) and Interrupts
• 1 standard test port - JTAG (IEEE 1149.1)

B. Development Environment

The Integrated Development Environment (IDE) tools suite
(shown in Figure 2) is a graphical interface consisting of
a compiler, debugger, assembler, profiler, linker and editor.
Stretch’s C/C++ compiler programs the processor and au-
tomatically configures the Instruction-Set Extension Fabric
(ISEF) with application-specific instructions. A debugger and
profiler in the IDE tools suite provide verification and analysis
capability. 32-bit fixed point data types are supported.

Key Features
■ High-performance RISC Processor Core

• 300 MHz, 32-bit Xtensa core
- 16- and 24-bit instructions
- Supports MMU with TLB
- Single-precision floating point operations

■ Instruction-Set Extension Fabric (ISEF) 
• Aligned load and store

- 8, 16, 32, 64, and 128 bit
• Unaligned load and store

- Up to 16 bytes variable byte 
streaming I/O

- Up to 32 bits variable bit 
streaming I/O

• User-defined extensions to the core ISA
- Defined in C/C++
- Fully pipelined and interlocked

■ Embedded Memory 
• 256KB SRAM
• 32KB Data RAM
• 32KB Data Cache
• 32KB Instruction Cache

■ Peripherals
• 200 MHz 60x bus for 

inter-processor connectivity

• One 64-bit DDR400 SDRAM port
with ECC 

• One 64-bit, 133 MHz PCI-X port
• Four programmable parallel ports

- 10/100/1000 Media Access Controller
- MII/GMII support
- FIFO mode (bypassing MAC)

• One Generic Interface Bus (GIB)
• Two programmable serial ports

- Two-wire and SPI devices
• Two UART ports with IrDA
• General Purpose I/O (GPIO) and 

Interrupt pins
• One standard test port supporting JTAG 

IEEE 1149.1
■ OS Support

• Support for standard operating systems
• Support for a coprocessor mode without OS

Extending the Possibilities™ > www.stretchinc.com

STRETCH
ADVANTAGES
■ Dramatically boosts 

system performance in 

compute-intensive appli-

cations by customizing the

S5620 ISA through the 

embedded programmable 

logic within the processor

engine

■ Enables fast time to 

performance

■ Reduces development and

system costs

■ Provides high-perform-

ance I/Os at industry-

leading speeds

APPLICATIONS
■ Networking

■ Office Automation

■ Video and Imaging

Stretch Inc.
777 E. Middlefield Road
Mountain View, CA 94043
tel 650.864.2700 • fax 650.623.0150

The Stretch® S5620 software- 
configurable processor, based on
Stretch’s revolutionary S5 engine,
dramatically boosts system perform-
ance by off-loading compute-
intensive tasks from a general 
purpose processor. By tailoring
embedded programmable logic
within the processor engine to the
application, system developers
optimize the application software

and the instruction-set architecture
simultaneously. Integrating high-
performance I/Os at industry 

leading speeds, the S5620 offers remarkable performance enhancements to systems
using PowerPC-based processors.

S5620 Block Diagram

S5620

Fig. 1. Stretch S5620 Processor architecture

The Stretch® Integrated Development Environment (IDE) unifies the develop-
ment of compute-intensive application software and the configuration of
Stretch’s S5000 family of processors through the embedded programmable logic
within the processor engine. The Stretch IDE provides a single tool, running
from a single source program in a single step. The tool embeds an intuitive
development flow and focuses on a simple methodology for both programming
and system configuration.
With the Stretch IDE, system
developers use C/C++ to per-
form functional development,
performance tuning, system
verification, and in-circuit
debugging in embedded
applications.

Stretch IDE provides a single
environment for performing the
following tasks:

■ Functional development: 
Compile and run directly 
on X86 processors

■ Performance tuning: Compile 
and run using a cycle-accurate 
instruction set simulator

■ System verification: Run on the 
customer target system or Stretch 
development board

■ In-circuit debugging: Run on the 
customer target system via a JTAG
interface

Stretch IDE provides a graphical interface to
the following tools: 

■ Stretch C Compiler

An integrated C/C++ and Stretch C 
compiler for compiling both Extension 
Instructions and application code. 

■ Instruction Set Simulator

A fast and cycle-accurate simulator 
used for debugging, performance 
measurement and profiling. 

■ Profiler

Provides detailed information about
program execution enabling the 
developer to identify hot spots and 
optimize performance code.

■ Debugger

A powerful source-based debugging 
environment for application code as 
well as Extension Instructions. 

■ Text Editor

A dynamic environment for editing 
C/C++ and Stretch C source code.

■ Project Management

• Project Manager
• Build Manager
• Board Manager
• License Manager

STRETCH
ADVANTAGES
■ Configures and optimizes 

Stretch’s S5000 family of

software-configurable 

processors through the 

embedded programmable 

logic within the processor

engine

■ Provides a complete tool 

suite under a single,

unified development 

environment (Stretch C 

Compiler, Stretch 

Instruction Set Simulator,

Profiler, Debugger)

■ Enables automatic config-

uration of the Stretch 

ISEF with no hardware 

tuning

■ Fast Compile for efficient 

development

■ Offers a familiar look,

feel, and flow of industry-

leading IDEs, making it 

easy to use

Stretch Inc.
777 E. Middlefield Road
Mountain View, CA 94043
tel 650.864.2700 • fax 650.623.0150

Stretch IDE
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Software Development EnvironmentFig. 2. Stretch Software Development Environment

C. Application Domain

The Stretch processors target the embedded market and are
suited for compute-intensive algorithms. Embedded software
engineers can create optimized processors using an off-the-
shelf chip and their C/C++ application. C-functions can be
parallelized into new instructions that execute in a single cycle.
The specialized compiler technology automatically converts
selected C functions into programmable logic. Most impor-
tantly, because the uniqueness of the instruction set comes
directly from the application code, the processor can accelerate
compute-intensive application in many markets including, but
not limited to:

• High-end consumer audio-video (video conferencing, me-
dia gateways, digital TV, broadcast equipment)

• Office imaging (scanners, printers)
• Wireless communications (base stations, satellite re-

ceivers)
• Medical imaging (CAT scans, ultrasound)
• Industrial imaging (e.g., robot/machine vision)
• Video
• Wireless
• Biometrics

D. Performance

See Section?? and Section?? for performance results. The
development boards have a pin-out for power so it can be
measured per application.

The bottle-necks to algorithm performance, hardware ca-
pacity or utilization have yet to be determined. However, one



limitation is the fixed bandwidth to the ISEF - there are 2
128-bit input ports and 1 128-bit output port.

IV. M ATHSTAR FPOA

MathStar designs and develops ultra-high performance
semiconductors for Digital Signal Processing (DSP) and fil-
tering applications. MathStar was founded by communications
industry veteran Douglas M. Pihl and is a development stage
company headquartered in the Minneapolis, MN metropolitan
area. In March 2005, MathStar was selected by Honeywell to
provide Field Programmable Object Array (FPOA) technology
that will be incorporated into Honeywell semiconductors for
satellites in military space systems.

A. Architecture

The MathStar FPOA chip shown in Figure 3 has 400 Silicon
Objects - 256 ALUs, 64 Multiply Accumulates (MACs), and
80 Register Files (RFs). It has a bi-directional 800-MHz DDR
16-bit LVDS port and features differential clock inputs as well
as sync inputs. The LVDS port can also be configured as a
bi-directional 32-bit 320-MHz HSTL port. The device also has
four sets of 44-pin 100 MHz LVCMOS General Purpose I/Os
(GPIO), operating either synchronously or asynchronously.
Finally, it has twelve 500-MHz 768x76-bit internal memory
blocks and two 250-MHz 36-bit DDR (72-bits per cycle)
RLDRAM or DDRII SRAM controllers for external memory
accesses. There are more FPOA devices in development to
serve a broader range of applications.

The FPOA can communicate information with external
processors or hosts through a bridge to LVDS and HSTL ports.
Local bus interface modules to the PowerQUICC processor
and PLX-to-PCI bridges are implemented.

The FPOA Silicon Blocks can have a semi-autonomous
nature. For example, each ALU Silicon Object has a program
memory of eight instructions that contain both operation
and communication directions. The control path is bit-wise
granular and guides program execution while data is moved
and operated upon via the 16-bit data path. (Multiple objects
can be combined to create wider data paths.) Thus, instructions
are the mechanisms that tie the independent control and data
paths together within the array.

The instructions are loaded at power up and can be recon-
figured by the host system. Intelligent scheduling and routing
tools deterministically allocate instructions to each object
before run-time. This works in conjunction with the MathStar’s
Party Line communication scheme which permits high speed
sharing of data throughout the device (and externally).

B. Development Environment

The MathStar design flow is given in Figure 4. Algorithms
must be converted to the Visual Elite/SystemC programming
language for simulation and test. The environment supports
clock accurate simulation and verification (with the Riveria
simulator).

32- and 64-bit integer data types can be handled by cas-
cading processor modules together. The 1-GHz speed is not
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External RAM 2 interfaces Up to 266 MHz DDR 36 bit RLDRAM II 2.394 GBytes/sec 
GPIO 2 banks Up to 100 MHz 48 pins per bank 96 pins 
High Speed I/O Transmit 2 ports 18-500 MHz DDR 16 + 1 bit LVDS 32 Gbps 
High Speed I/O Receive 2 ports 250-500 MHz DDR 16 + 1 bit LVDS 32 Gbps 
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Fig. 3. FPOA architecture

maintained in this configuration. Floating point and double
precision types can be emulated.

C. Application Domain

The FPOA is suited for higher performance DSP applica-
tions like high-sample-rate complex Fast-Fourier Transforms
(FFTs) and Finite Impulse Response (FIR) filters. MathStar is
targeting the commercial and military/aerospace DSP market.
Their prototype boards can cascade into larger systems through
the LVDS and HSTL high speed interfaces. No large-scale
systems have been built to-date.

D. Performance

The FPOA devices have 400 1-GHz silicon objects, re-
sulting in a device with 400 gigaoperations/second of perfor-
mance. The MathStar FPOA claims to deliver 2-4 times the
performance of an FPGA while retaining the flexibility of a
programmable device.

Power consumption is highly application dependent. The
SOA13D40-01 FPOA with 400 silicon objects running at 1-
GHz with 100% utilization can consume approximately 10 to
30 Watts of power. However, power consumption depends on
many factors such as the run-time activity, operating frequency,
voltage supply, temperature conditions, process variations, etc.
These numbers should be considered estimates.
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Function (TF) Silicon Object. There are several more 
planned for later versions of the product.

In addition, RAM memory resources and configurable 
I/O wrap the Silicon Object core to complete a specific 
device definition. The type and ratio of the Silicon 
Objects, memory resources and I/O were chosen based 
on detailed study of the attributes of communication 
processing algorithms and are defined to target specific 
applications spaces.

I/O Subsystems have been tailored to the different 
applications spaces as well.

II Design Flow 

There are three major layers to the Silicon Object 
Design Flow. It is possible to enter the tool flow 
through a third party IDE (such as Summit VE) or 
through MathStar's assembly level programming 
language known as Object HDL (OHDL). These two 
flows overlap, in that the IDE based design flow is a 
superset of the Assembly code based design flow. 
There are unique benefits to both of these design flows 
and they can be used interchangeably as required by 
the designer. As an analogy, there are often situations 
in conventional processor code development where 
assembly level libraries or code sequences are used to 
meet very tight timing, code size, or performance 
requirements within the context of higher level 
language code development. MathStar software 
provides the designer with the ability to work both at 
the abstract level, and dive down to the hardware 
details in assembly level as required in an integrated 
development environment. See Figure 1.

 

Figure 1.MathStar Design Flow

• High-level Description Language. This language 
could be SystemC, Streams-C, or Handel-C as long 
as it follows such language syntax constructs. 
These languages have knowledge of timing and 
provide a complete design and simulation 
capability inside of an IDE (Visual Elite from 
Summit). Due to the granularity of Silicon Objects, 
a higher level of abstraction is allowed than is 
usual within a traditional synthesizable HDL. The 
SystemC is parsed and converted to MathStar 
OHDL for physical placement onto the array. 

• Silicon Object Assembly Language. (OHDL). This 
is MathStar's programming language. It is the 
representation that MathStar translates other input 
data structures into. It is also a stand alone 
development language that can be used to create a 
design. If performance, timing, or other 
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Fig. 4. MathStar FPOA Design Flow

One bottle-neck to algorithm performance is the 16-bit
processor array. Larger data sizes require cascaded processors
and, thus, the 1-GHz speed cannot be maintained.

V. 8 WEEK PLAN

• Week 1-2 Become familiar with the tools and develop-
ment environment for the Stretch S5000 processor and/or
the MathStar FPOA chip.

• Week 3 Try a simple FIR filter example, profile code and
write an optimization. Record the run-time improvement.

• Week 4 Measure the power for the FIR filter example
and record time and effort it took to use the development
environment.

• Week 5-7 Try an image processing algorithm and repeat
steps from Week 3-4.

• Week 8 Write up report with results and make a presen-
tation.

VI. STRUCTURAL DYNAMICS APPLICATION

The structural dynamics motivation for this project comes
from the area of machining of metal parts. For certain appli-
cations, typically involving high-precision components, it is
desirable to detect the variability in material properties of the
workpiece material. Such properties of interest may include
grain size or hardness. However, standard testing procedures
for these properties are destructive in nature and can there-
fore not be applied to a finished component. An alternative
approach relies on the observation that machining can be
viewed as a high strain rate, high temperature material test.

If various in-process (i.e., during machining) measurements
are made (e.g., acoustic, vibration, video), it seems reasonable
that a correlation could be developed between these measured
quantities and the material properties of interest. This would
then allow one to use the machining process itself as a
diagnostic for material property variability. Recent work at
LANL has attempted to do just that. In particular, high speed
video (4000 frames/sec) was recorded for hundreds of cuts
(yielding about 250 GB of video) involving workpieces with
several different hardnesses (as measured on the Rockwell C
scale). Two successive frames of a clip of this video are shown
in Figure 5. After preliminary analysis of the video streams
by humans, it seemed that the velocity of the cut chip was
closely correlated with workpiece hardness. However, there
are many challenges in extracting chip velocity from the video.
For instance, due to reflection from the chip, lighting can vary
significantly. Additionally, “clutter” (i.e., metal dust) can build
up on the tool. Finally, because the chip formed is typically
continuous, it can “flop” around and occasionally block or
at least blur the field of view. To address these challenges a
sequence of image processing algorithms were applied. These
algorithms include high pass filtering, interframe differencing,
and registration. While these algorithms are relatively easy to
implement, they can take quite some time to run on 250 GB of
data and on a standard PC. Thus, in order to have a real-time
chip velocity measurement tool, it is desirable to implement
these algorithms on special purpose, high speed processors,
which is the goal of this project.

Fig. 5. Video clips of a cut

VII. E QUIPMENT REQUIREMENT

Workstation running Windows XP and Stretch and/or Math-
Star development environment tools. We currently have the
hardware and software tools for this project. The tools include
power planners or pin-outs on the hardware to determine the
power/ops calculation.
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